

mano.bank Payments
API specification

Version 2.1

1

How to integrate with mano.bank Payments API
To be able to run given code samples with our payment system you’ll need to have specific
settings typically available to our customers. If you are planning to consider us to be your
service provider and would like to try mano.bank Payments API, please contact us by email:
support@mano.bank.

Exchange required info

Client should provide to mano.bank the following info

• Account/s (one or few) to be accessible by API and Payments limits per operation/day
• The name of the application that will use the API
• IP (one, or few) from which client will call mano.bank Payments API
• It’s Private key’s X.509 Certificate attributes:

• C - Country Name: 2-digit country code where your organization is legally located.
• ST - State/Province: Full name of the state where your organization is legally

located.
• L - City: Full name of the city where your organization is legally located.
• O - Organization Name: Legal name of Client organization.
• OU - Organization Unit: Name of the department (Not mandatory. Press Enter to

skip)
• CN - Common Name: Client’s User (application) Name
• Email: Clients representative email address

i.e.

C = LT,
ST = LT,
L = Vilnius,
O = Organization,
OU = IT,
CN = client-api-gw,

 emailAddress = admin@client.com

Then mano.bank will provide

• Client_Id
• User_Id
• JWT audience Id string (base URl of mano.bank Payment Api i.e. api-

test.mano.bank/payments)
• JWT issuer Id string (usually same as Client Id)
• JWT subject string (usually same as User Id)
• JWT maximum token expiration time (usually 60min)

mailto:support@mano.bank
mailto:admin@client.com

2

These attributes should be used by Client to create JWT and in Requests Headers. See
appropriate sections for more information.

Create key for signing JWT and Payment
requests
To be able sign JWT and Request body, client should create asymmetric RSA key. Also, Client
should create X.509 certificate using attributes provided and agreed with mano.bank (see
section above).

Below is example how to create X.509 certificate (could be self-signed) and new private key
by using openssl

openssl req -nodes -newkey rsa:2048 -keyout client.key -out client.crt -x509 -days 730

mano.bank requires to use only RSA algorithm with 2048 key length for private key
generation.

Certificate valid period is minimum 2 years (730 days).

Provide X.509 certificate with Public key
included
Send your certificate and public key (i.e. client.crt) to mano.bank representative.

Certificate thumbprint used to identify Client’s key

3

4

API Overview

Terminology

In this section are listed some terminology used in the documentation.

Term Explanation
Resource Owner The Resource Owner refers to the mano.bank who owns data and

authorizes Client access to data
Client The Client refers to the consumer of the API, which is commonly

an application
API Call API call is a request towards the API which receives a response.

The API is by design stateless, and therefore it does not
"remember" anything about previous requests, i.e., there is no
session. Therefore, every request made towards the API must
contain certain headers so that the API can authenticate and
authorize the Client.

Access Authorization Access Authorization is the process through which the Client
obtains permission to access the Resource Owner's data and
services at the bank.

Access Token A token which is generated and signed by the Client. The access
token is passed by the Client in all mano.bank Payment API calls.

API HTTP Methods

RESTful APIs use HTTP methods to perform actions to fetch, modify, add or delete resources.
Here is the list of methods used in this API.

GET - This method reads a resource and returns it. It returns 200 on success.

POST - This method creates a new resource. It returns 201 on success.

Following table shows which methods are supported by the APIs.

API GET POST PATCH DELETE
Payments API X X - -

API Response codes

The API response HTTP codes are returned for the user application within the JSON object.
These codes can be divided into four categories.

• 2xx Success
• 3xx Redirection
• 4xx Client errors
• 5xx Server error

5

Every response returned by this API has a response code. Response codes can be used to
check the result of the requests, e.g., was the request successful or did it fail.

The following table shows the return codes used by Payment API:

HTTP Status
Code

Text

Description

200 OK Request was fulfilled.
201 Created The request has been fulfilled, resulting in the

creation of a new resource.
302 Found Redirect.
401 Unauthorized Like 403 Forbidden, but specifically for use when

authentication is required and has failed or has not
yet been provided.

403 Forbidden The request was valid, but the server is refusing
action. The user might not have the necessary
permissions for a resource.

404 Not Found The requested resource could not be found but
may be available in the future.

Idempotency
mano.bank Payments APIs support idempotency, allowing to retry a request multiple times
while only performing the action once. This helps avoid unwanted duplication in case of
failures and retries.

If a transient error or a time-out occurred and the action was not completed in the previous
request, the subsequent retry pushes the action to its completion. If the action is already
completed, the action is to be performed only once and the same result is to be returned for
the retry process.

mano.bank payment-related API is idempotent. The following table shows the payment
idempotency rules.

Idempotency fields

The following table lists the idempotency fields of APIs.

API name Idempotency
Field

Rules

accounts-
payment

referenceId Client uses the referenceId field for idempotency
control. For payment requests that are initiated with
the same value of referenceId, the same result is to be
returned for the request.

6

Note: Pay attention, field name should be strongly
case sensitive and in camelCase, as specified here,
otherwise idempotency won’t be applied. It’s on client
responsibility.
Note: This API checks the consistency of these key
request parameters such as referenceId,
payerAccountNumber,
beneficiaryAccountNumber, amount and currency. If
any of the key values is different from that of the
previous request, the error
REPEAT_REQ_INCONSISTENT is to be returned.

Message encoding
To prevent errors or ambiguity caused by special characters enclosed in a message, encode
the message properly before transmitting it.

Encoding scenarios Encoding method

For the byte data, such as the JWT, Digest, Signature and
the other encrypted content, encode the data with the
base64UrlEncode algorithm before transmitting.

base64UrlEncode

Example for Base64UrlEncode in JavaScript Code Snippet

//BASE64URL function
function base64UrlEncode(source) {
 // Encode in classical base64
 encodedSource = CryptoJS.enc.Base64.stringify(source)

 // Remove padding equal characters
 encodedSource = encodedSource.replace(/=+$/, '')

 // Replace characters according to base64url specifications
 encodedSource = encodedSource.replace(/\+/g, '-')
 encodedSource = encodedSource.replace(/\//g, '_')

 return encodedSource
}

HTTP Message Headers

Request Headers (expected as part of the request)

Date string Required

7

HTTP header element for date and time represented as RFC 7231
Full Dates. Example date: Wed, 24 Apr 2019 14:00:37 EEST

Host string Required

HTTP header element for specification of the domain name of the
server

X-MB-Client-Id string Required

Client ID provided by mano.bank, identifying the Client as
organisation

X-MB-User-Id string Required

User ID provided by mano.bank, identifying the Client’s application
as api consumer

Authorization string Required

JWT Access Token, in "Authorization: Bearer JWT_TOKEN" format
(<Access Token> provided by Client)

Digest string Required

Digest header as defined in [RFC3230] contains a Hash of the
message body

Note: this header should be Base64Url Encoded

Signature string Required

Signed Digest with other headers for non-repudiation

Application-level signature of the request by the Client, using its
Private X509 key [https://tools.ietf.org/id/draft-cavage-http-
signatures-12.html]

Request-Id string Required

Unique Request Id

Digest Header format

SHA256 hash of the HTTP request’s payload(messageBody), which is Base64Url Encoded
and normalized as a Digest HTTP header. You must concatenate SHA-256=” with the digest
string, as shown below.

Digest calculation example in JavaScript Code Snippet

function calculateDigest() {
 const requestData = resolveRequestBody();
 const sha256digest = CryptoJS.SHA256(requestData);
 //base64UrlEncode
 const base64sha256 = base64UrlEncode(sha256digest);
 //concatenate SHA-256=
 const calculatedDigest = 'SHA-256=' + base64sha256;
 return calculatedDigest;

https://tools.ietf.org/id/draft-cavage-http-signatures-12.html
https://tools.ietf.org/id/draft-cavage-http-signatures-12.html

8

}

Example: payload(messageBody) =

{
 "referenceId": "PMD-02498",
 "amount": 99.04,
 "currency": "EUR",
 "payerAccountNumber": "LT225030120000000198",
 "beneficiaryAccountNumber": "LT805030120000000221",
 "paymentDetailsType": "UNSTRUCTURED",
 "paymentDetails": "payment invoice nr.1032-26",
 "beneficiary": {
 "name": "Cargo357"
 }
}

Result of calculated Digest should look like this:

Digest: SHA-256= pS847o6ACtCqPVAntLRoZS5VTYbqfL1Cp4b-WYCICJc

Host Header format

The Payments API server name to which the request is sent.

In Test ENV

api-test.mano.bank

In Production ENV

api.mano.bank

Date Header format

Date and time the message originated, using GMT format, as defined by RFC7231.

Example:

Date: Wed, 25 Dec 2017 00:23:05 GMT

JavaScript Code Snippet

String gmtDateTime =
DateTimeFormatter.RFC_1123_DATE_TIME.format(ZonedDateTime.now(ZoneId.of("GMT")))

https://tools.ietf.org/html/rfc7231#section-7.1.1.1

9

Authorization

Client Authorization is implemented using JSON Web Tokens (JWT).

Understand how JWT is generally used

Please look at https://jwt.io/introduction/
For debugging JWT requests you can use https://jwt.io/#debugger
To choose a library for JWT please see https://jwt.io
Notice that the JWT tokens are case sensitive.

Using JWT to communicate with mano.bank API

For each HTTP request, using the JWT library of your choice, create a JWT token, and set the
following fields as described below. Set the JWT token in the request "Authorization" header
as

"Authorization": "Bearer <JWT token>"

Access token (jwt) structure

JWT Structure: HEADER.PAYLOAD.SIGNATURE

HEADER: ALGORITHM & TOKEN TYPE

The JWT header should have these parts: the type of the token, which is JWT, and the signing
algorithm being used, such as HMAC SHA256 or RSA and key id used to sign this access
token.

alg string
The signing algorithm being used, in our case only value ”RSA256”

typ string
The type of token being used, which in our case is always ”JWT”

kid string
kid: Key id. Client Public key certificate thumbprint (see section
Certificate thumbprint)

PAYLOAD:DATA

iss string <= 100 characters

https://jwt.io/
https://jwt.io/introduction/
https://jwt.io/#debugger
https://jwt.io/

10

Issuer. A unique identifier of the entity that issued the access_token,-
use your Issuer ID string obtained from mano.bank. (see section
Exchange required info)

aud string <= 100 characters
Audience. A value that identifies mano.bank resources allowed to
access by this access_token. In our case its common path to
Payments API URI. i.e. for test Env: api-
test.mano.bank/payments/v1/

sub string <= 100 characters
Subject. the Subject identifies an application / user for which the
access token is being issued. In our case, user ID assigned by
mano.bank, identifying the Client’s application/user.

nbf string <= 10 characters
The "nbf" (not before) claim identifies the time before which the JWT
MUST NOT be accepted for processing. (usually it equals to iat
claim value). While the serialization may differ by assertion format, it
is REQUIRED that the time be expressed in UTC with no time zone
component.

iat string <= 10 characters
Issued at. The time at which the access_token was issued. While the
serialization may differ by assertion format, it is REQUIRED that the
time be expressed in UTC with no time zone component.

exp string <= 10 characters
Expires at. The time at which the access_token expires. While the
serialization may differ by assertion format, it is REQUIRED that the
time be expressed in UTC with no time zone component.
Expires at value is calculated by adding mano.bank provided JWT
maximum token expiration time (usually 60min) to iat value.

jti string <uuid4>
JWT Id - The unique identifier of the access_token.

SIGNATURE

The jwt signature part is created from the encoded header and the encoded payload signed
with secret (Client Private Key) using the algorithm specified in the header.

For example: in case of RSA SHA256 algorithm, the signature will be created like in this
javaScript code snippet:

// Set header for JWT
var header = {
 'typ': 'JWT',
 'alg': 'RS256',
 'kid': pm.environment.get('jwt_kid') // Client Public key certificate thumbprint
value
};

// Prepare timestamp in seconds

11

var currentTimestamp = Math.floor(Date.now() / 1000)

// Set data payload for JWT
var data = {
 'iss': pm.environment.get('jwt_iss'),
 'aud': pm.environment.get('jwt_aud'),
 'sub': pm.environment.get('jwt_sub'),
 'nbf': currentTimestamp,
 'iat': currentTimestamp,
 'exp': currentTimestamp + 30, // expiry time is 30 seconds from time of creation
 'jti': 'jwt_nonce' // const value is just for demonstration purpose
}

var sHeader = JSON.stringify(header);
var sPayload = JSON.stringify(data);

// build token and sign token
 var signedToken = KJUR.jws.JWS.sign(header.alg, sHeader, sPayload, pri_key);

 pm.environment.set('jwt_signed', signedToken);

The signature is used to verify the JWT payload wasn't changed along the way, and to verify
that the issuer of the JWT is Client.

Example of JWT Header and Payload

HEADER: ALGORITHM & TOKEN TYPE

{
 "typ": "JWT",
 "alg": "RS256",
 "kid": "3f4b1d4592c0bbbc4a716bdf1f3806adfbe8b8a6"
}

PAYLOAD:DATA

{
 "iss": "mxm",
 "aud": "api-test.mano.bank/payments/v1/",
 "sub": "mxm-api-user",
 "iat": 1650869127,
 "exp": 1650872127,
 "jti": "jwt_nonce"
}

Calculation Result with encoded and decoded values

12

13

Payment Request Data non-repudiation
assurance
Before calling the payments/v1/accounts-payment endpoint, client must sign HTTP
Request to ensure data non-repudiation.

Purpose

To ensure Payment data non-repudiation
• the Client Private key is used by the Client Application to digitally sign

payments/v1/accounts-payment Request.
• from the other hand mano.bank payment API uses the Client user’ certificate to verify

received payments/v1/accounts-payment Request.

The Request signing process should be completed using the ‘Draft Cavage HTTP Signature
method’ as defined by ietf.org in https://tools.ietf.org/id/draft-cavage-http-signatures-
12.html.

How does it work?

Payment API has a mandatory Signature Header which has the following format

Signature string Required
Signed Digest with other headers for non-repudiation
Application-level signature of the request by the Client, using its Private
X509 key [https://tools.ietf.org/id/draft-cavage-http-signatures-12.html]
Pay attention, instead of standard Base64, mano.bank requires to use
Base64UrlEncode

https://tools.ietf.org/id/draft-cavage-http-signatures-12.html
https://tools.ietf.org/id/draft-cavage-http-signatures-12.html
https://tools.ietf.org/id/draft-cavage-http-signatures-12.html

14

Sign a request

The following graphic shows an overview of the Request signature creation process:

The signature is sent in the 'Signature' HTTP Header as described in the RFC.

Payment API follows the HTTP Signature spec but with some restrictions as listed below.

• Signature header must have the following structure with these attributes:

Signature:
keyId="<thumbprint>",
algorithm="rsa-sha256",
headers="<signature headers>",
signature="<signature code>"

• The keyId attribute is the thumbprint number of the Client user X.509 certificate/key
pair generated by Client (see section)

• The key size for the used RSA key pair must be at least 2048 bit
• The only allowed algorithm is rsa-sha256
• The headers attribute specifies required list of Request Headers included in Signature:

o host date (request-target) x-mb-client-id x-mb-user-id request-id content-
type digest

o headers must be listed in lowercase
o headers must be concatenated in this specified order
o The request-target is a combination of the HTTP action verb and the request

URI path, for example (request-target): post payments/v1/accounts-payment
• The Final signature attribute should be created using following algorithm:

signature="Base64UrlEncode(RSA-SHA256(signingString))"

https://tools.ietf.org/id/draft-cavage-http-signatures-12.html

15

Example – Request with Signature header

POST https://api.mano.bank/payments/v1/accounts-payment

Let’s say we have request with Headers and Body

To calculate Signature header and its components you should:

Create signing string from (request target) and headers – like in this javaScript code snippet:

Digest: SHA-256=8VIIqcNA1L8UQfYyXHxJ2NsOYv2jPgA57mnaYrsemxE
Date: Tue, 17 May 2022 10:15:05 GMT
X-MB-Client-Id: mxm
X-MB-User-Id: mxm-api-user
Request-Id: 9e9ad826-df2c-4de6-9a52-ad754ee130bb
Content-Type: application/json
Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IjNmNGIxZDQ1OTJjMGJiYmM0YTcxNmJkZjFmM
zgwNmFkZmJlOGI4YTYifQ.eyJpc3MiOiJteG0iLCJhdWQiOiJhcGktdGVzdC5tYW5vLmJhbmsvcGF5
bWVudHMvdjEvIiwic3ViIjoibXhtLWFwaS11c2VyIiwibmJmIjoxNjUyNzgyNTA0LCJpYXQiOjE2NTI3O
DI1MDQsImV4cCI6MTY1Mjc4MjUzNCwianRpIjoiand0X25vbmNlIn0.cuXYKzhBnRFHDRUtJNX2SmZ
LPnIP5ZDw3UlXKhvK0TYQjZxQTdMG37QX6QgcX9J8YyaMyvExsYTrdom_6w0BcWmXkRb1jmE_V
UPAH7-ADjLk_RpSwprTT2VrKbz8BdcqqczdHxh2k30f-
FrQtr7oAG2KFiUqmSNXTTeZ1dYf7xOHWqIhvtTD3oz5UoJe7cZuNvGbSXpZH9QbOGbF77BOPaYL
BURiUoqN8101M2xBZSLnB2HotMw4n5Hy27R9prJOx6pQJejU7WmvfeopL0JmmRZ6H8UFHyX6U
Kcj_HvbhDxYYiyFva8fn6p1vXGdlh-KSw1ha380Ip8xFlzqx7sJEg
Host: api-test.mano.bank

{
 "referenceId": "142-019",
 "amount": 99.04,
 "currency": "EUR",
 "payerAccountNumber": "LT945030120000000163",
 "beneficiaryAccountNumber": "LT897300010152608069",
 "paymentDetailsType": "UNSTRUCTURED",
 "paymentDetails": "payment invoice nr.1032-26",
 "beneficiary": {
 "name": "Metal and Metal"
 }
}

 const url = new sdk.Url(resolveVariables(request.url));
 const host = url.getHost().toLowerCase();
 const path = url.getPathWithQuery();
 const method = request.method.toLowerCase();
 const date = moment().utc().format("ddd, DD MMM YYYY HH:mm:ss") + " GMT";
 const x_client_id = pm.environment.get('client-id');
 const x_user_id = pm.environment.get('user-id');
 const content_type = pm.environment.get('content-type');
 const request_id = guid.v4();

16

Resulting signingString=
host: api-test.mano.bank\n
date: Tue, 17 May 2022 10:15:05 GMT\n
(request-target): post /payments/v1/accounts-payment\n
x-mb-client-id: mxm\n
x-mb-user-id: mxm-api-user\n
request-id: 9e9ad826-df2c-4de6-9a52-ad754ee130bb\n
content-type: application/json\n
digest: SHA-256=8VIIqcNA1L8UQfYyXHxJ2NsOYv2jPgA57mnaYrsemxE

Then signature code is signed with Client private key and Base64UrlEncoded, like in
provided javaScript snippet below

The final Request with all Headers and signature code as part of Signature header should
look like this example below:

 // prepare signingString from Request Headers
 var signingString =
 `host: ${host}\n` +
 `date: ${date}\n` +
 `(request-target): ${method} ${path}\n` +
 `x-mb-client-id: ${x_client_id}\n` +
 `x-mb-user-id: ${x_user_id}\n` +
 `request-id: ${request_id}` ;

 const digest = calculateDigest();
 signingString += `\ncontent-type: ${content_type}\ndigest: ${digest}`

function encryptSignature(signingString) {

 const messageDigest = forge.md.sha256.create();
 messageDigest.update(signingString, "utf8");

 var s = forge.util.encode64(getPrivateKey().sign(messageDigest));

 //base64UrlEncoded
 // Remove padding equal characters
 s = s.replace(/=+$/, '')

 // Replace characters according to base64url specifications
 s = s.replace(/\+/g, '-')
 s = s.replace(/\//g, '_')

 return s;
}

Digest: SHA-256=8VIIqcNA1L8UQfYyXHxJ2NsOYv2jPgA57mnaYrsemxE
Date: Tue, 17 May 2022 10:15:05 GMT
X-MB-Client-Id: mxm
X-MB-User-Id: mxm-api-user

17

In case of successful Request processing, you should get the following Response (see
Payment API specification for more details: https://developers.mano.bank/api-
details#api=payments-api&operation=payment)

Signature: keyId="3f4b1d4592c0bbbc4a716bdf1f3806adfbe8b8a6",algorithm="rsa-
sha256",headers="host date (request-target) x-mb-client-id x-mb-user-id request-id content-type
digest",signature="izPaXpArD7K3kx-VY5swGbVbBpeaVs02x-
ndsF8v382_0w3kFoxxZ2bdq_awNfTGvBcoWBPkHRn41gfwfUQnnBMdMOov7Na9HViBAZvdmSWLb
q8OEvGJwg_JyEXNwSWrxIMsFu2xQz7q_y_iKdraU_wKHXxp_4qSKOCmjS8jn9rTzhf8qc5vX0BntSPa
0hmJy2Y-QbVxqEWFZjy7QHSxEXLdLsK7NKdA3hLLCcBxHcDofX34G0F1yxfZ_YWzil6m8e-
tQGhdvMqC665pnLUMAN_qvpA_X0LNGxQe6Vf-ngFeMM-
ictZuDaV7FYOXkjEQ7j1bRbeiuX66UiyhgXEo5Q"
Request-Id: 9e9ad826-df2c-4de6-9a52-ad754ee130bb
Content-Type: application/json
Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IjNmNGIxZDQ1OTJjMGJiYmM0YTcxNmJkZjFmMz
gwNmFkZmJlOGI4YTYifQ.eyJpc3MiOiJteG0iLCJhdWQiOiJhcGktdGVzdC5tYW5vLmJhbmsvcGF5bW
VudHMvdjEvIiwic3ViIjoibXhtLWFwaS11c2VyIiwibmJmIjoxNjUyNzgyNTA0LCJpYXQiOjE2NTI3ODI1MD
QsImV4cCI6MTY1Mjc4MjUzNCwianRpIjoiand0X25vbmNlIn0.cuXYKzhBnRFHDRUtJNX2SmZLPnIP5Z
Dw3UlXKhvK0TYQjZxQTdMG37QX6QgcX9J8YyaMyvExsYTrdom_6w0BcWmXkRb1jmE_VUPAH7-
ADjLk_RpSwprTT2VrKbz8BdcqqczdHxh2k30f-
FrQtr7oAG2KFiUqmSNXTTeZ1dYf7xOHWqIhvtTD3oz5UoJe7cZuNvGbSXpZH9QbOGbF77BOPaYLB
URiUoqN8101M2xBZSLnB2HotMw4n5Hy27R9prJOx6pQJejU7WmvfeopL0JmmRZ6H8UFHyX6UKcj_
HvbhDxYYiyFva8fn6p1vXGdlh-KSw1ha380Ip8xFlzqx7sJEg
User-Agent: PostmanRuntime/7.29.0
Accept: */*
Postman-Token: e01ca5e4-8015-48a9-b3b5-8083792a93f7
Host: api-test.mano.bank
{
 "referenceId": "142-019",
 "amount": 99.04,
 "currency": "EUR",
 "payerAccountNumber": "LT945030120000000163",
 "beneficiaryAccountNumber": "LT897300010152608069",
 "paymentDetailsType": "UNSTRUCTURED",
 "paymentDetails": "payment invoice nr.1032-26",
 "beneficiary": {
 "name": "Metal and Metal"
 }
}

Content-Type: application/json
{
 "operationId": "00008355",
 "status": "CONFIRMED",
 "metadata": {
 "responseId": "8e6bdaec-8bec-4cc8-894b-f77c34dfbaaf",
 "correlationId": "3a10a79a-f1a1-4e69-a8d4-b866e6561aa1",
 "hasErrorMessage": false,
 "messages": []
 }
}

https://developers.mano.bank/api-details#api=payments-api&operation=payment
https://developers.mano.bank/api-details#api=payments-api&operation=payment

